




# **GENERAL PURPOSE** PNP TRANSISTOR IN A HERMETICALLY SEALED **CERAMIC SURFACE MOUNT PACKAGE** FOR HIGH RELIABILITY APPLICATIONS

#### **MECHANICAL DATA**

Dimensions in mm (inches)



## **SOT23 CERAMIC** (LCC1 PACKAGE)

### **FEATURES**

- SILICON PLANAR EPITAXIALPNP **TRANSISTOR**
- HERMETIC CERAMIC SURFACE MOUNT PACKAGE (SOT23 COMPATIBLE)
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVELS OPTIONS
- HIGH SPEED SATURATED SWITCHING

### **Underside View**

PAD 1 - Base PAD 2 - Emitter PAD 3 - Collector

E-mail: sales@semelab.co.uk

# **ABSOLUTE MAXIMUM RATINGS** (T<sub>A</sub> = 25°C unless otherwise stated)

| $V_{CBO}$           | Collector – Base Voltage                        | -40V          |  |  |
|---------------------|-------------------------------------------------|---------------|--|--|
| $V_{CEO}$           | Collector – Emitter Voltage                     | -50V          |  |  |
| $V_{EBO}$           | Emitter – Base Voltage                          | -5.0V         |  |  |
| $I_{\mathbb{C}}$    | Collector Current                               | -200mA        |  |  |
| $P_{D}$             | Total Device Dissipation @ T <sub>A</sub> =25°C | 0.36W         |  |  |
|                     | Derate above 25°C                               | 2.06mW / °C   |  |  |
| $P_{D}$             | Total Device Dissipation @ T <sub>A</sub> =25°C | 1.2W          |  |  |
|                     | Derate above 25°C                               | 6.9mW / °C    |  |  |
| $T_{STG}$ , $T_{J}$ | Operating and Storage Temperature Range         | −65 to +200°C |  |  |
| $R_{	heta JA}$      | Thermal Resistance Junction – Ambient           | 486°C/W       |  |  |
| $R_{	heta JC}$      | Thermal Resistance Junction – Case              | 146°C/W       |  |  |

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

**Semelab plc.** Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Document Number 2539





## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise stated)

|                       | Parameter                              | Test Conditions                              |                          | Min. | Тур. | Max.     | Unit               |
|-----------------------|----------------------------------------|----------------------------------------------|--------------------------|------|------|----------|--------------------|
| V <sub>(BR)CEO*</sub> | Collector – Emitter Breakdown Voltage  | I <sub>C</sub> = -10mA                       | I <sub>B</sub> = 0       | -40  |      |          |                    |
| V <sub>(BR)CBO</sub>  | Collector – Base Breakdown Voltage     | $I_C = 10\mu A$                              | I <sub>E</sub> = 0       | -50  |      |          | V                  |
| V <sub>(BR)EBO</sub>  | Emitter – Base Breakdown Voltage       | $I_E = 10\mu A$                              | I <sub>C</sub> = 0       | -5   |      |          | 1                  |
| I <sub>CEX</sub>      | Collector – Cut-off Current            | V <sub>CE</sub> = -40V                       | $V_{EB} = -3V$           |      |      | -20      | nA                 |
| I <sub>BL</sub>       | Base Cutoff Current                    | V <sub>CE</sub> = -40V                       | $V_{EB} = -3V$           |      |      | -50      |                    |
| ON CHARA              | CTERISTICS                             | •                                            |                          |      |      |          |                    |
| V <sub>CE(sat)</sub>  | Collector – Emitter Saturation Voltage | I <sub>C</sub> = -10mA                       | I <sub>B</sub> = -1mA    |      |      | -25      | V                  |
|                       |                                        | $I_C = -50 \text{mA}$                        | I <sub>B</sub> = - 5mA   |      |      | -0.5     |                    |
| V <sub>BE(sat)*</sub> | Base – Emitter Saturation Voltage      | $I_C = -10mA$                                | $I_B = -1mA$             | -0.6 |      | -0.9     | V                  |
|                       |                                        | $I_C = -50 \text{mA}$                        | I <sub>B</sub> = - 5mA   |      |      | -1.2     |                    |
| h <sub>FE</sub> ∗     | DC Current Gain                        | $V_{CE} = -1V$                               | $I_{C} = -0.1 \text{mA}$ | 40   |      |          | _                  |
|                       |                                        | $V_{CE} = -1V$                               | $I_C = -1mA$             | 45   |      |          |                    |
|                       |                                        | $V_{CE} = -1V$                               | $I_C = -10mA$            | 50   |      | 150      |                    |
| SMALL SIG             | NAL CHARACTERISTICS                    | ı                                            |                          |      |      | <u> </u> |                    |
| f <sub>t</sub>        | Current Gain Bandwidth Product         | V <sub>CE</sub> = -20V                       | I <sub>C</sub> = -10mA   | 250  |      |          | MHz                |
|                       |                                        | f = 100MHz                                   |                          |      |      |          |                    |
| C <sub>obo</sub>      | Output Capacitance                     | V <sub>CB</sub> = -10V                       | I <sub>E</sub> = 0       |      |      | 6.0      | pF                 |
|                       |                                        | f = 1.0MHz                                   |                          |      |      | 6.0      |                    |
| C <sub>ibo</sub>      | Input Capacitance                      | $V_{EB} = -1.0V$                             | I <sub>C</sub> = 0       |      |      | 8.0      | pF                 |
|                       |                                        | f = 1.0MHz                                   |                          |      |      |          |                    |
| h <sub>ie</sub>       | Input Impedance                        | $V_{CE} = -10V$ $I_{C} = -1.0n$ $f = 1.0KHz$ | I <sub>C</sub> = -1.0mA  | 1.0  |      | 6.0      | kΩ                 |
| h <sub>re</sub>       | Voltage Feedback Ratio                 |                                              |                          |      |      | 10       | x 10 <sup>-4</sup> |
| h <sub>fe</sub>       | Small Signal Current Gain              |                                              |                          | 50   |      | 300      | T —                |
| h <sub>oe</sub>       | Output Admittance                      |                                              |                          | 4.0  |      | 40       | μhmos              |
| N <sub>F</sub>        | Noise Figure                           | $V_{CE} = -5V$                               | $I_{C} = -100 \mu A$     |      |      | 6        | dB                 |
|                       |                                        | f = 100Hz                                    | $R_S = -1k\Omega$        |      | 6    | UB       |                    |
| rb'C <sub>C</sub>     | Collector Base Time Constant           | V <sub>CE</sub> = -20V                       | $I_{C} = -100 \text{mA}$ |      |      | 250      | ps                 |
|                       |                                        | f = 131.8MHz                                 |                          |      |      | 250      |                    |
| SWITCHING             | CHARACTERISTICS                        |                                              |                          |      |      | 1        | •                  |
| t <sub>d</sub>        | Delay Time                             | $V_{CC} = -3V$                               | $V_{BE} = 0.5V$          |      |      | 35       | ns                 |
| t <sub>r</sub>        | Rise Time                              | I <sub>C</sub> = -10mA                       | $I_{B1} = -1mA$          |      |      | 35       |                    |
| t <sub>s</sub>        | Storage Time                           | $V_{CC} = -3V$                               | $I_C = -10mA$            |      |      | 175      |                    |
| t <sub>f</sub>        | Fall Time                              | $I_{B1} = I_{B1} = -1 \text{mA}$             |                          |      |      | 50       | 1                  |

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

E-mail: sales@semelab.co.uk

**Semelab plc.** Telephone +44(0)1455 556565. Fax +44(0)1455 552612.